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ABSTRACT 

The middle-latitude standing wave problem is investigated by means of a quasi-geostrophic, linear, steadJ;-state 
model in which the zonal current is perturbed by the lower boundary topography and by a distribution of heat sources 
and sinks. All the perturbations are assumed to have a single meridional wavelength and the dissipation is considered 
to take place in the surface boundary layer using, as a first approach, a horizontally uniform drag coefficient. 

After investigating some basic properties of the model atmosphere, some computations are made to  determine 
its response to the combined forcing by topography and by diabatic heating for January 1962. The resulting per- 
turbations are found to be in rather good agreement with the observed standing waves. The results also indicate 
that the standing waves forced by the topography are in about the same position as those forced by the diabatic 
heating and that the former have somewhat larger amplitudes than the latter. 

The effect of allowing the drag coefficient to have one constant value over the continents and a smaller constant 
value over the oceans is examined and found to be quite important when the ratio of the two values is 6, but small 
(yet such as t o  bring the computed and observed eddies into closer agreement than in the case of a uniform drag 
coefficient) for a ratio of 2. 

1. INTRODUCTION 
One of the main problems encountered in the develop- 

ment of a general theory of climates is explaining how the 
large-scale atmospheric standing waves are maintained 
against the dissipative forces. It is the purpose of this 
paper to examine this problem using a steady-state, 
two-level, quasi-geostrophic model of the atmosphere in 
which the standing waves are forced both by the earth’s 
topography as obtained from Berkofsky and Bertoni 
(1955) and by a steady distribution of heat sources and 
sinks obtained from Brown (1964). The approach used 
here falls within the scope of the second of the two 
approaches to the standing wave problem discussed by 
Saltzman (1968). I n  the first approach, general circulation 
experiments are performed (i.e., the atmospheric model 
equations are integrated numerically over relatively 
long periods of time using various values of the external 
parameters in such a may that their effects on the solution 
can be determined). It is then possible to examine how the 
various physical mechanisms included in the model 
contribute to bring about the standing eddy component 
of the computed climate, the latter being defined as the 
zonally asymmetric part of the time-averaged solution of 
the model. Numerical general circulation models including 
forcing mechanisms for the standing waves have been 
presented (e.g., Mintz 1965 and Miyakoda et al. 19691. 
The results of these studies are encouraging but in view 
of the complexity of the problem, i t  is useful to supple- 
ment the above approach with a second one. 
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In the second approach, the procedure is to  solve the model 
equations relating the time-averaged variables themselves 
to the time-averaged distribution of heat and momentum 
sources due to diabatic processes, topography, friction, 
and transient disturbances (cf. Saltgman 1961). On the 
grounds that the amplitudes of the standing eddy compo- 
nents are small compared to their respective zonal mean 
counterparts, the nonlinear equations are usually approxi- 
mated by linear perturbation equations in which the 
zonal mean variables are assumed to be known from 
observations. As for the sources of heat and momentum, 
they can be either specified or parameterized in terms of 
the time-averaged variables themselves. The choice made 
by previous investigators and their main modeling 
assumptions have been reviewed by Saltzman (1968). 

The present study extends the work of authors who 
considered the forcing of stationary waves by either 
topography (e.g., Charney and Eliassen 1949, Bolin 1950, 
Gambo 1956, Murakami 1963, Sankar-Rao 1965a) or 
diabatic heating (e.g., Smagorinsky 1953, Gilchrist 1954, 
DOos 1962, Sankar-Rao 1965c, Sankar-Rao ancl Saltzman 
1969) in that here both mechanisms are included in the 
same model In  this sense, i t  is similar to the investigations 
of the Staff Members, Academia Sinica (1958), Saltzman 
(1965), and Sankar-Rao (19656). Our treatment of the 
diabatic effects differs from the previous ones, however, 
in that we use a time-averaged distribution of heat 
sources and sinks computed by Brown (loc. cit.) from 
daily atmospheric data for January 1962. In  earlier 
studies, the diabatic heating fields were generally either 
parameterized or prescribed as a simple harmonic function 
of the spatial coordinates. One exception is the investiga- 
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tion by the Staff Members, Academia Sinica (loc. cit.), 
in which the heating fields were obtained from atmospheric 
data; but since rather restrictive assumptions were made 
both in the computation of the heating fields and in the 
modeling of the stationary waves, there is a need for a 
further examination of the problem. 

2. THE STEADY STATE QUASI-GEOSTROPHIC MODEL 

We shall assume that the motion takes place on a 
p plane centered at  45'N so that we can use a Cartesian 
coordinate system in which the x and y coordinates 
increase to  the east and north, respectively; and we shall 
make use of the hydrostatic approximation to introduce 
pressure as the vertical coordinate. The steady state 
quasi-geos trophic vorticity and thermodynamic e qua tions 
then take the form 

and 

respectively (Wiin-Nielsen 1959). In  the above, V is the 
nondivergent part of the horizontal velocity vector, with 
components zc and v along the x and y axes, respectively; 
p is the vertical component of relative vorticity; f is the 
Coriolis parameter with valuefo at 45'N; w is the vertical 
velocity dpldt where p is the pressure and t is time; 
g=9.8 m.sF2 is the acceleration of gravity; v=ia/ax + japy, where i and j are unit vectors pointing to the east 
and north, respectively; 4=gz where z is the height 
above mean sea level; a=-ad In d/ap is the static sta- 
bility parameter in which a is the specific volume and 
6' is potential temperature; R=0.287 kJ-kg-' adeg-' 
is the gas constant for air; c,=1.004 kJ.kg-'.deg-' is 
the specific heat a t  constant pressure ; and H i s  the diabatic 
heating per unit time and unit mass. I n  this formulation, 
u is independent of the horizontal coordinates (Phillips 
1963). The friction terms do not appear explicitly in 
eq (1) and (2), but the effect of friction will be taken into 
account through the lower boundary condition in the 
manner suggested by Charney and Eliassen (1949), that 
is, by considering that friction in the Ekman boundary 
layer introduces some vertical motion at the bottom of 
the free atmosphere. 

In  eq (2), we shall take H to  be a known function and 
introduce the approximation 

25, 50, 75, and 100 cb, respectively, and introduces the 
notation 

(5) 

eq (l) ,  (2), and (3) can be cast into the form 

and 

after some elementary manipulations. In  deriving eq (6), 
(7), and (S), the derivatives with respect to  pressure have 
been replaced by finite differences; and the boundary 
condition wo=O has been used. The lower boundary 
condition will be taken to be 

w 4 = v 4  vp,-- ;; f 4 ,  (9) 

the first contribution to  w4 being due to the flow of air over 
uneven terrain where the standard pressure is p ,  and the 
second contribution resulting from the viscosity in the 
Ekman layer (e.g., Charney and Eliassen 1949, Phillips 
1956, and Wiin-Nielsen 1961). I n  the sequel, the quan- 
tity F in eq (9) will be called the "friction coefficient." 
While most results presented in this paper were obtained 
with F treated as a constant, some results will also be 
shown for which F was taken to be larger over the conti- 
nents than over the oceans. 

To obtain the vorticity and nondivergent wind at  100 cb 
appearing in eq (9), we follow Smagorinsky (1963, p. 164) 
and extrapolate the geopotential (which here is the same 
as extrapolating the stream function) from 25 and 75 cb to 
100 cb on the assumption of a constant temperature lapse 
rate of 6.5"CIkm. Upon integrating the hydrostatic 
equation, me then obtain 

Using the same procedure, one can derive the relation 

dJ=f0*. (3) 

The nature of this last approximation has been discussed 
by Phillips (1958). 

For our modeling assumption to be as consistent as 
possible with those used by Brown (loc. cit.) to compute 
the heating fields, we shall follow the latter in using a 
two-level representation of the atmosphere. When one 
uses the integers 0, 1 , 2 ,  3, and 4 as subscripts to  represent 
the values of any variable a t  the pressure levels p=O, 

r' 

which is a relation used only for display purposes, that is, 
to obtain q2 for comparison with observations once \k* and 
qT have been obtained from the model equations. 

We now linearize eq (6-9) by considering that the 
flow consists of a zonal component on which small- 
amplitude perturbations are superimposed. The former is 
characterized by the stream functions - U*y, - UTy, and 
the latter by the stream functions +* and & forced by the 
perturbation heating H and variations in ground pressure 
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p,. The linearized versions of eq (6-9), after elimination 
of the vertical velocity, then take the form 

=& (U , - l . 6  UT) 2 (12) 
P4 

and 

where 

and 
p= dfldy= const (16X 10-12m-1 s-') . 

In  the following, we shall assume that the perturbation 
quantities have a simple meridional structure given by 
cos(py), that is, 

[#*, # T ,  H ,  pg]=[$*(z), $T(z)> g(x),  $t?(z)1 coS(pY) (l4) 

in which we take y=O at  45'N so that the perturbation 
quantities have a maximum absolute value there. Equa- 
tion (14) is a solution to eq (12) and (13) if U* and UT 
are constants. This assumption is made throughout the 
paper except for the experiment mentioned at  the end of 
subsection 5A. Charney and Eliassen (1949) evaluated 
from an inspection of the main mountain barriers that the 
meridional wavelength L,=27r/c( should be approximately 
50' of latitude. They found, on the other hand, that their 
model for the standing waves forced by the topography 
yielded standing waves which closely approximated the 
observed ones when L, was assumed to be 66' of latitude. 
Smagorinsky (1953) used two separate values of the 
meridional wavelength in his study of standing waves 
forced by diabatic heating, namely, 35.0' and 53.9' of 
latitude. In  the present study, the meridional wavelength 
will be taken to be 60' of latitude ( ~ ( = 0 . 9 5 X 1 0 - ~  m-') 
for most computations. 

The longitudinal dependence of the perturbations will 
be represented by the Fourier series 

N 
[$*(A), $ T ( x ) ,  BO), G~(X)I=X n=l {[A:,  A:, Qn, R ~ I  

Xcos(nX)+[B:, Br, T,,, S,]sin(nX) (15) 

in which X=xla COSO" is the lonpitude. a and (D" beinp the 

radius of the ewth and 45'N, respectively. When eq (14) 
and (15) are substituted in eq (12) and (13), the following 
system of algebraic equations is obtained: 

4Rj0 a cos q,, , 
u2cpp:n 

and 

If S,, R,, Q,, and Tn are considered known from observa- 
tions, eq (16) can be solved for A;, B:, A:, B: for 1 I n  
5 N .  Then #* and $T can be obtained from eq (15); 

and j,, j 2 ,  and from eq (4), (5), and (11). 
To get some insight into the basic properties of the 

two-level model, we shall f i s t  compute the response of the 
model to forcing by either the bottom topography or by 
the diabatic heating. The attention will be focused in the 
next sections on changes in the model properties with 
the zonal wavelength of the disturbance. 

A A 

A 

3. RESPONSE TO TOPOGRAPHIC FORCING 

We shall consider the adiabatic flow of the model 
atmosphere over a surface where the standard pressure 
is given by a simple harmonic function wit,h an amplitude 
of 1 cb, that is 

(17) 
A 
P g ( V  =cos(nX), 

and solve eq (16) for n=1, 2, . . ., N .  The solution for 
the mean stream function will be written in the form 

(18) 

c:= (A:'+ ~*,'y (19) 

a:= tan-'(B:/&) (20) 

A 
$*(X)=C*, cos(nx-a;) 

where 

and 

with similar exmessions for the thermal stream function. 
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WAVC NUMBER n 

FIGURE 1.-Amplitude of the mean stream function forced by a 
sinusoidal distribution of with zonal wave number n and 
an amplitude of 1 cb. The parameters are U+=15 m/s, UT= 
5 m/s, F=4X 10-6 s-l, and p2=0.90X 10-12 m--2 (i.e., L,=6Oo of 
lat.). 

In  all the computations, the parameters were assigned the 
following values representative of winter conditions : 

P=4X10+ s-l, U*=15 m/s, uT=5 m/s, 

c2=3X m4 . sz . kg-2, and pz=0.9X 10-12m-z 

(corresponding to a meridional wavelength of 60'). 
The plot of (72 appears in figure 1 as a function of 

the zonal wave number n. We note that the amplitude 
of the $* wave is largest for n=2 and decreases rather 
rapidly as n changes, indicating that the model atmos- 
phere is more easily excited on the scale of the wave with 
n=2 than on any other scale. For example, we see that 
the amplitude of the wave is approximately 15 times 
larger for n=2 than for n=10. The model is, therefore, 
relatively insensitive, at least with respect to the mean 
stream function, to the presence of the high wave number 
components in the expansion eq (15) for p,(X). 

The reason for the maximum response at n=2 is made 
clear by an analysis of the time-dependent analog of eq 
(12) and (13) without forcing mechanisms. The analysis 
reveals that, in the special case where F= UT=O, the time- 
dependent model has two normal modes of oscillation 
with phase speeds of 

A 

e= u* - p/K2 (21) 

for the nondivergent mode, for which $ T - O ,  $* #O,  and 

c= u* - @/(K2+S2) (22) 

for the divergent mode, for which $* = 0, $* # 0 (Thompson 
1961, pp. 110-112). For the parameters used above, we 
find that eq (21) yields c=O for n=1.82. This implies 
that, a t  n=2, the nondivergent mode has a nearly vanish- 
ing frequency, leading to a condition of quasi-resonance in 
the forced problem due to a forcing mechanism operating 

WAVE NUMBER n 

FIGURE 2.-Amplitude of the thermal stream function forced by a 
sinusoidal distribution of p, with zonal wave number n and an 
amplitude of 1 cb. The parameters are the same as those in 
figure 1. 

a t  nearly the same frequency as one of the natural fre- 
quencies of the system. I n  our model, pure resonance does 
not occur because a dissipation mechanism has been 
incorporated (in addition to the fact that only integral 
values of n are possible); but the largest response is 
nevertheless obtained near the resonance point of the 
inviscid problem. It should also be kept in mind that, in 
our model, U,#O [as opposed to eq (21) and (22)] and 
that the effects of vertical mind shear should be considered 
in a more detailed discussion. 

Some computions have also been made using a merid- 
ional wavelength of 100' of latitude (pz=0.324 X 
m-2), in which case the perturbations have a maxi- 
mum amplitude at  45'N and vanish at  20'N and 70'N. 
According to eq (21), the nondivergent mode would be 
stationary for n=3.9; hence, we would expect quasi- 
resonance in the topographically forced model (with 
F=UT=O at  n=4) since only integral values of n are 
admissible. The computations have shown that, with F 
and UT as in figure 1, the amplitude of tp mean stream 
function forced by a 1-cb oscillation in p ,  does, indeed, 
rise from a value of 7.8 X lo5. m2. s-' a t  n= 1 to a maximum 
value of 28.6 X 105.m2.~-1 at n=4 and then decreases 
monotonically as n increases. 

From eq (22), we find that, in the case UT=F=O and 
for the values of the other parameters listed above, no 
value of K exists for which c = O ;  thus in this case, no 
divergent mode ($* ' 0 ,  $,#O) could be made to resonate 
by a steady-state forcing mechanism-in contrast to the 
nondivergent modes. It would seem reasonable to expect, 
then, that this property would be reflected in the model 
having nonvanishing UT and F by a weaker response in 
$T than in +* to a simple harmonic mountain, a t  least in 
the parameter-space vicintiy of the quasi-resonance point 
for I)*. This can be seen to be the case by comparing 
figure 2, which gives the amplitude of the f i T  wave forced 

j' 426-857 0 - 7 1  - 2 
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FIGURE 3.-Phase difference between zonal wave number n in the 
mean stream function and the same harmonic in the functiy 

The'mean stream function wave is to the west of the - p ,  
wave by the fraction of the zonal wavelength indicated in the 
ordinate. The parameters are the same as those in figure 1. 

by a 1-cb oscillationin p g  as a function of the zonal wave 
number, with figure 1. We note that, for zonal wave 
number 2, the amplitude of the + T  wave is 6.2 times 
smaller than that of the $* wave, in agreement with the 
above discussion. 

Since the thermal stream function $T is proportional to 
mean temperature between 25 and 75 cb, we can think 
of figure 2 as giving the amplitude of that temperature 
wave near 50 cb that is forced by a 1-cb oscillation in a,. We see that the amplitude of this temperature wave 
has a maximum amplitude for n=l and a relative mini- 
mum near zonal wave numbers 3 and 4. The latter coin- 
cides with the region of the spectrum where the computa- 
tions reveal a radical change in the phase relationship 
between the &+ and # J ~  waves in the sense that the mean 
and thermal stream functions are exactly in phase for 
n=1, 2, and 3 and out of phase by exactly half a wave- 
length for n24.  

To gain some insight into this behavior, we return again 
to the simplified model with F=UT=O. In  this case, we 
find from eq (13), using thezame xalues of the other 
parameters as above, that the $T and p ,  waves are exactly 
in phase with each other so that, near 50 cb, the low 
temperatures would be found over the terrain ridges and 
the high temperatures would be found over the terrain 
troughs. (This phase relationship would be different if the 
mean zonal wind were sufficiently small and/or the static 
stability mere sufficiently large. Resonance in the +T field 
would then also become possible.) From eq (12), on t.he 
other hand, we find that the resonance point where 

KZ=@/U,= Ki  

separates the region where the $* and p ,  waves are exactly 
in phase with each other (K < KR) from the region where 
they are half a wavelength out of phase (K  > KR).  In  
short, on the longwave side of the resonance point KR, the 
mean and thermal stream functions are in phase with each 
other and with the p ,  wave; on the shortwave side of KR, 
on the other hand, the mean and thermal stream functions 
are half a wavelength out of phase with each other, the 
latter being in phase with the G, wave. We note that the 
above phase relationships imply that the amplitude of the 
stream function wave increases or decreases with height 
depending on whether K is on the longwave or shortwave 

A A 

A 

u 1.4 '"h 

WAVE NUMBER n 

FIGURE 4.-Amplitude ratio of the stream function forced by a 
sinusoidal distribution of $, with zonal wave number n. The 
parameters are the same as those in figure 1. 

side of KR, respectively. We shall see in subsection 5B 
that, even in the case UT#O and F is an arbitrary func- 
tion of longitude, the topographically forced mean and 
thermal stream functions are either exactly in phase or 
half a wavelength out of phase with each other. The 
position of these waves relative to the topography does 
depend, however, on the values of UT and F. 

The influence of the mean thermal wind and friction on 
the phase of the forced perturbations can be seen by com- 
paring the results of the above discussion with those of 
figure 3, which gives the phase difference (ks a fraction of a 
wavelength) between the trough in the p ,  wave (or the 
ridge in the terrain elevation) and the first upstream ridge 
in the $* wave for the case uT=5 m/s, F=4XlO-'s- ' .  
For example, me see that, for zonal wave number 2, the 
ridge in the $* wave is about one-fifth of a wavelength up- 
stream from the trough in the p ,  wave. It is clear that, for 
all zonal wave numbers, the ridge in the $* wave tends to 
be to  the west of the ridge in the terrain height and that 
this displacement decreases as the zonal wave number 
increases. As mentioned above, for n = 1, 2, and 3, the 
thermal stream function wave is exactly in phase with the 
mean stream function; whereas for n 2 4, these two waves 
are half a wavelength out of phase. We come to the con- 
clusion, as has Saltzman (1965) , that the topographically 
forced perturbations have no tilt with height and, there- 
fore, cannot transport heat in the meridional direction. 

As a measure of the amplification or damping wi% 
height, we shall use the ratio of the amplitude of the +I 

wave to that of the c3 wave. This ratio, denoted by A, 
appears in figure 4 as a function of the zonal wave number. 
We find that those components with n = l ,  2, and 3 
amplify while the others damp with height, in accordance 
with the phase relationships obtained above. It will be 
shown in subsection 5B that the amplitude ratio A is inde- 
pendent of the friction coefficient F, even when the latter 
is assumed to be a function of longitude. 

A 
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FIGURE 5.-Amplitude of the mean stream function forced by a 
sinusoidal distribution of H with zonal wave number n and an 
amplitude of 10-3 kJ.kg-1.s-1. The parameters are the same as 
those in figure 1. 

A 

4. RESPONSE TO FORCING 
BY HEAT SOURCES AND SINKS 

The discussion of this section is similar to that of the 
previous one except that here the standing waves are pro- 
duced by the diabatic heating. We shall, therefore, set 
p,=O, obtaining 

A 

H(A)=&, cos(nA) (23) 

with Qn=lW3 kJ.kg-'.s-', and solve the system, eq (16). 
The response can then be written in the form of eq (18), 
(19), and (20) for the mean stream function; similar 
expressions can be written for the thermal stream function. 

The amplitude C,* of the mean stream function appears 
as a function of the zonal wave number in figure 5. We see 
that, contrary to the case where the perturbations result 
from the presence of the topography (fig. l ) ,  the most 
easily excited mode here is zonal wave number 1.  The 
decrease in C: as n increases is seen to be quite rapid. In  
fact, c i s  less than 10 percent of Cf; and Cf,, is again less 
than 10 percent of Cz. 

The amplitude C,' of the thermal stream function can 
be seen in figure 6 as a function of the zonal wave number. 
Just as in the case of the mean stream function, zonal 
wave number 1 is found to be the most easily excited 
mode. 

We note that, in the case under discussion, the solution 
to eq (16) can be written explicitly as 

3 

FIGURE 6.-Amplitude of the thermal stream function forced by a 
sinusoidal distribution of H with zonal wave number n and an 
amplitude of 10-1 kJ-kg-1.s-l. The parameters are the same as 
those in figure 1. 

A 

+ i[a; (a3 - 1.6 e- 1.6 ~ 4 - a ~ )  -e ( U Z U ~  +u~uJ] } (25) 
where 

A'= (%as +a34 +u: (US- 1.6 e- 1.6 - ~ 5 )  '. 
Here, i=&i and the at's have been defined after eq (16). 
Since a, is proportional to the friction coefficient, F, we 
find that, in the frictionless case, A*,=AZ=O, 

and 

Thus the amplitude of the mean stream function goes to 
zero as the vertical wind shear vanishes (a3=0), while 
that of the thermal stream function tends to  become 
inversely proportional to  as, that is, to [a- U*(62+Ii2)]. 
The resonance in the thermal mode then occurs if there 
is a real value of K that makes this factor zero (this is 
not the case for the values of the parameters used in this 
study). We see also from eq (26) and (27) that since 

the mean and thermal stream functions are in phase 
with each other on the longwave side of the point €P=p/U* 
in which case the amplitude of the stream-function wave 
increases with height. On the shortwave side of this point, 
on the other hand, the mean and thermal stream functions 
are a half wavelength out of phase with each other; and 
the amplitude of the stream-function wave decreases with 
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0 0 8  

WAVE NUMBER n 

FIGURE 7.-Phase difference between zonal wave number n in the 
function H and the same harmonic in the mean (upper curve) 
or thermal (lower curve) stream function. The stream function 
waves are to the east of the H wave by the fraction of the zonal 
wavelength indicated on the ordinate. The parameters are the 
same as those in figure 1. 

A 

A 

height. We emphasize here that these conclusions are 
valid only for the case F=O. 

The phase lag between the various harmonics in the 
heating function H and the corresponding harmonics in 
the mean and thermal stream functions for the case 
F=4X s-l can be seen in figure 7. The phase difference 
is defined here as the distance, in units of the zonal wave- 
length deiermined by n, between a ridge in the forcing 
$mctionAH and the first ridge downstream in the response 
$* and $*. Thus we observe that, for zonal wave number 
2, the ridges in the mean stream function are about 0.42 
of one wavelength downstream from the ridges in the heat- 
ing function, that is, the ridges (troughs) in the mean 
stream function occur only slightly to  the west of the 
longitudes of maximum cooling (heating). For the same 
harmonic, the thermal stream function is seen to be about 
0.13 of one wavelength to the west of the mean stream 
function so that the stream function slopes to the west 
with height and therefore transports heat northward. This 
is in qualitative agreement with the results obtained by 
Saltzman (1965) and previously by Smagorinsky (1953), 
using a zonal wavelength of 160° of longitude and a 
meridional wavelength of 53.9' of latitude (ours is 60'). 

The amplitude ratio A as defined in the previous section 
appears in figure 8. We see that wave components 1 and 2 
amplify with height, whereas the others damp with height. 
We note that this is in agreement with the inviscid 
case discussed after eq (28). It is interesting to compare 
these results with those shown in figure 4 where the 
standing waves are maintained by the topography. We 
see, for example, that the amplitude of the stream function 
for n = l  increases by a factor of about 3.9 between 75 cb 
and 25 cb when the wave is created by the diabatic heating 
(fig. S), whereas it increases by only a factor of about 1.6 
when the wave is due to topographic effects (fig. 4). This 
seems t o  be in part a reflection of the fact that, in the pres- 
ent model, the topographic forcing tends to place, a t  least 
for the long waves, most of the energy in the mean mode; 
whereas the internal diabatic heating tends to partition 
the energy somewhat more evenly between the mean and 
thermal modes. 

0.5 

0 :  k k A Ib la Ib I, I8 
WAVE NUMBER n 

FIGURE 8.-Amplitude ratio of the stream function forced by a 
sinusoidal distribution of H with zonal wave number n. The 
parameters are the same as those in figure 1. 

A 

5. THE RESPONSE OF THE TWO-LEVEL MODEL 
TO THE TOPOGRAPHY AND DlABATlC HEATING 

NEAR 45'N 

A. CASE OF A CONSTANT FRICTION COEFFICIENT 

In  an attempt to  see whether or not the model presented 
in the previous section is capable of reproducing the 
main features of the observed standing waves, we have 
determined the solution that it yields when p ,  is obtained 
(using a standard atmosphere) from the ground height 
lalues published by Berkofsky and Bertoni (1955) and 
H is taken from the computations by Brown (1964) for 
January 1962. The values of U* and UT were taken to be 
15 m/s and 5 m/s, respectively, so as to be representative 
of the middle-latitude conditions in January, the month 
for which the values of the diabatic heating apply. The 
computations were made for a few values of the friction 
coefficient F and the meridional wave number fi. 

In  view of the simple meridional structure that we 
assume for the perturbations [seeAeq (14)], we need, 
strictly speaking, to  know Gg and H along one latitude 
circle only, say 45ON. To introduce some smoothing, on 
the other hand, we assumed and H(A) to be the 
meridional averages of the standard pressure at the 
ground and of the heating between 30°N and 60°N. The 
Fourier coefficients appearing in the expansion [ea 
(15)j for p,(X) were then computed from the relations 

A 

with analogous relations holding true for the Fourier 
coefficients Qn and Tn in the expansion of H ( h ) .  The 
integrals in eq (29) were evaluated numerically using inter- 
vals of 5' of longitude. The amplitude and phase of zonal 
wave components 1 through 18 for the standard pressure 

A 
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TABLE 1.-Mean amplitude and phase of the standard pressure and 
diabatic heating between SOON and 60"N f o r  zonal wave numbers 1 
through 18 
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Standard pressure Diabatlc beating 
Zonal wave 
Number n (Rn2+S,2)L/2 tan-1 (R./S.) (Qn2+T.Z)l/2 tan-l (Qo/Tn) 

- 
- 
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1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

Zonal mean 

(cb) 
4. 22 
5.21 
2.71 
2.34 
2.28 
0.69 
1.75 
0.35 
1.23 
0.45 
0. 28 
0.43 
0.17 
0.31 
0.12 
0.25 
0. 24 
0.37 

96.08 

(deg.) (10-6 kJ-kg-l.s-l) (deg.) 
183.2 4.95 216.9 
107.2 9.21 163.0 
310.7 2.16 181.9 
279.6 4.71 227.1 
156.4 1.53 122.9 
130.1 3. 45 303.4 
331.7 1.41 loo. 5 
244.2 3.62 193.8 
192.5 3.23 335.2 
302.8 2.14 85.3 
11.2 1.15 66.7 

132.6 3.32 187.0 
278.2 2.17 246.4 
346.1 2.45 332.2 

4.6 2. 14 70.3 
240.3 0.23 69.2 

10.9 0. 16 170.7 
334.8 0.07 288.4 

2. 51 

a t  the ground and the diabatic heating (together with 
the zonal mean values) are given in table 1.  We note in 
particular that, in both the topography and the diabatic 
heating, the maximum amplitude is found in zonal wave 
number 2 followed by wave number 1. 

The function Cg(A)  as reconstructed from eq (15) 
using N=18 appears in figure 9A, and the reconstructed 
function H(A) using N = 5  and N=18 is given in figure 
9B. It is clear from the dashed curve in figure 9B that 
the smoothed representation of Brown's (1964) heating 
has the tendency to be positive over the oceans (with the 
maximum occurring near the western edge of the oceans) 
and negative over the continents, as expected for the 
month of January. 

To determine the importance of the topography in 
creating standing waves in our model atmosphere, first 
we consider the case in which H=O and is as shown 
in figure 9A. With the use of eq (16), (15) with N=18, 
and eq (4), ( 5 ) ,  and ( l l ) ,  the forced perturbation heights 
a t  25,  50, and 75 cb shown in figure 10 are obtained. At 
the three levels, the forced pattern consists of a major 
trough near 140°E, a ridge near 12OoW, and a trough 
near 70"W. If we refer to  figure 9A, we observe that the 
major trough a t  140°E in figure 10 occurs in the lee of 
the Himalayas and nearly coincides with the eastern 
coast of Asia. We note also that the trough deepens by 
about 55 m and shifts by 5" to  the east from 75 cb to  25 
cb. Near the west coast of North America, we find a ridge 
that slopes from 12OOW at  75 cb to  125"W at  25 cb. 

A 

N. AMERICA fzzzwnm 
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FIGURE 9.-(A) the function 3, as obtained from the first 18 zonal 
harmonics (n=O excluded) of the mean standard pressure at the 
ground between 30'N and 60'N; the positions of the continents 
are shown schematically; (B) the diabatic heating function H 
as reconstructed from the first five and 18 zonal components 
(n= 0 excluded) of Brown's (1964) heating values between 30"N 
and 60°N for January 1962. 
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The second major trough appears near 65oW at the three 
pressure levels, that is, near the eastern coast Of North 

FIGURE 10.-Perturbation heights Of the 25-9 50-, and 7Scb sur- 

tion of standard pressure at the ground shown in figure SA. The 
faces produced by the flow of the zonal current over the distribu- 

- 
America. parameters are the same as those in figure 1. 
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FIGURE 11.-Perturbation heights of the 25-, 50-, and 75-cb sur- 
faces produced by the distribution of diabatic heating and cooling 
given by the solid curve in figure 9B. The parameters are the 
same as those in figure 1. 

FIGURE 12.-Perturbation heights of the 25 ,  50-, and 75-cb sur- 
faces. The solid curves give the observed distribution for January 
1962, as averaged between 30°N and 60°N. The dashed, and 
doedashed curves show the response of the mod01 to the com- 
bined forcing by the topography and diabatic heating (with 
N=18) using F=4 X 10-6s-1 and F = 6  X lO-Bs-*, respectively. 
The other parameters are the same as those in figure 1. 

The response of the model to the diabatic heating 
alone (solid curve, fig. 9B) appears in figure 11. Again, 
we find that the most prominent feature in the response 
is a trough near the eastern edge of Asia. The trough 
is about three times deeper a t  25 cb than a t  75 cb and 
shifts to the west by 20' from 75 to 25 cb. A second trough 
can be seen over the Atlantic, sloping from 3OoW at  75 cb 
to 65'W at  25 cb, again in the vicinity of a terrain-induced 
trough. It is worth noting also that, while the model 
tends to place the waves forced by the diabatic heating 
approximately in phase with those forced by the topog- 
raphy, the former have a somewhat smaller amplitude 
than the latter. 

If we relate the forced waves of figure 11 to the smoothed 
diabatic heating distribution of figure 9B (dashed curve), 
we find that the troughs tend to  occur near the regions 
of large-scale heating and the ridges consequently occur 
near the regions of large-scale cooling. These results agree 
qualitatively with those obtained by Smagorinsky (1953) 
and Gilchrist (1954) for winter conditions, using a single 
zonal wave number. 

The response of the model to the forcing by both the 
topography and the diabatic heating appears in figure 
12 as the dashed curve. The solid lines show how the 
observed heights, averaged between 30"N and 60"N, 
vary with longitude. We see that the model atmosphere 
is reasonably successful, especially a t  75 cb, in repro- 
ducine: the main features of the observed Dressure sur- 

The large friction coefficient reduces the amplitude and 
changes the position of the' disturbances, but the effect 
is not drastic. 

For both values of the friction coefficient, the troughs 
and ridges slope to  the west with height and share this 
feature with the observed standing waves. The westward 
slope with height in the observed standing waves is not a 
peculiarity of January 1962, but rather seems to be the 
usual structure observed in January (e.gi, Gilchrist 1954, 
Wiin-Nielsen 1961, Saltzman and Sankar-Rao 1963) and 
is therefore one feature that a model of the standing waves 
for January should be able to reproduce. We note that, 
with the present model, the systematic westward tilt 
was not present in the topographically induced perturba- 
tions (fig. 10) since one of the three major systems was 
sloping to  the west, another was vertical, and the third 
was sloping to  the east (with height). The westward tilt 
of the eddies in figure 12 is therefore due to the super- 
position of the thermally generated perturbations on those 
produced by the topography. 

Figure 13 shows the standing waves forced by both the 
topography and the heating, using three different values 
of p2, namely, 0.324 X mW2 (dot-dashed curve), 0.9 X 

m-2 (solid curve) 
corresponding to meridional wavelengths L, of looo, 60°, 

m-2 (dashed curve) and 1.5 X 

- 
faces. The dot-dashed curves in the figure are the corn- 
puted heights with F=6X10-6 s-l instead of 4X10-6 s-l, 

and 46' of latitude, respectively. The dashed curve of 
this figure is therefore the same as that of figure 12 and 
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FIGURE 13.-Perturbation heights of the 25-, 50-, and 75-cb sur- 
faces computed as a response to forcing by the topography and 
diabatic heating (with N=18) using p2=0.324 X m-2 
(dot-dashed curves), 0.90 X 10W2 m-2 (dashed curves), and 
1.50 X 10-12 m-2 (solid curves). The other parameters are the 
same as those in figure 1. 

is reproduced here for convenience. While there is a 
substantial difference in amplitude of the response for 
L,=46' and 60' of latitude, the two sets of curves are 
very nearly in phase with each other and with the ob- 
served waves (fig. 12). The curves for L,= 100' of latitude, 
on the other hand, differ appreciably from the others in 
the sense that they show a great deal more amplitude in 
the shorter zonal wavelengths, a result consistent with 
the discussion in sections 3 and 4, since an increase in L, 
tends to push the quasi-resonance points to higher zonal 
wave numbers. We are led to the conclusion, then, from 
figures 12 and 13 that, among the three meridional wave- 
lengths which we have used, L,=6Oo of latitude yields 
results that agree best with observations. 

Some computations have also been made (see Derome 
1968) to determine what improvements could be achieved 
by including more than one meridional mode in the per- 
turbations and by considering the observed latitudinal 
dependence of the basic zonal wind in a p-plane channel 
bounded by solid walls a t  30'N and 60'N. I n  such a 
channel, the maximum meridional half-wavelength of 
the perturbations is 30' of latitude and is equal to the 
single meridional half-wavelength used in figure 12. The 
resulting standing waves were found to be only slightly 
different from the computed ones shown in the above 
figure and are not reproduced here. It appears that the 
additional modes, in view of their very small meridional 

scale, are too far from the resonance point in parameter 
space to be of much significance. It was also found that 
the meridional variations in the basic zonal wind were 
not sufficiently large in these latitudes to be important. 
It is clear that, to represent properly the meridional struc- 
ture of the perturbations and of the basic zonal wind, we 
must replace the @-plane approximation with the more 
natural spherical geometry; but this will not be attempted 
in this study. 

I n  the following section, we shall use the p-plane approx- 
imation again to study the effects of allowing the friction 
coefficient F to be a function of longitude. 

B. CASE OF A VARIABLE FRICTION COEFFICIENT 

I n  addition to introducing zonal asymmetries in the 
ground elevation and diabatic heating, there is a third 
way in which the distribution of continents and oceans 
can have a bearing on the standing wave problem; and that 
is by causing a zonal asymmetry in the distribution of the 
friction coefficient. Unlike the topography and the diabatic 
heating, the zonal variation in F cannot, a t  least in the 
present formulation, interact directly with the zonal 
current to produce standing waves; but it can modify 
those created by the other two mechanisms. To study 
this effect, we shall again start with eq (l2) and (13) and 
assume F to be a function of longitude only, so that eq 
(14) and (15) are still applicable. Upon substitution of 
the expansions (eq 14 and 15) into eq (12) and (13), the 
terms containing the variable coefficient F(h)  are treated 
as follows. Let, for example, 

where 

[ g ,  , h, ] =ilZu F(X)+,(X) [ cos(nA) , sin(nX) ]dh . 

Substituting the expansion (eq 15) for +* with k 
index of summation into eq (31), we obtain 

and 

t' 
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can be evaluated, a t  least numerically, so that the co- 
efficients of A: and Br in eq (32) and (33) can be con- 
sidered known. From eq (32) and (33), we also see that the 
coefficients gn and hn in eq (30) are simply linear combina- 
tions of the basic unknowns A:, . . . , 4 and B:, . . . , Bi. 

When one proceeds in this manner, the Fourier trans- 
forms of eq (12) and (13) can be written, after some 
elementary manipulations, as 

(aZ+a4)&- (a3-dAX=qTn, (36) 

(UZ + a41 BE- ( ~ 3 - a ~ )  - q Qn, (37) 
N 

k=1 
(~.z+Q)C (Xk. Y k ,  n E -  1.6 x k ,  1.6 y k .  &) 

- ( ~ 2 ~ 5  + ~ 3 ~ 4 ) & =  (UZ 4- 4 b R n - ~ z q  Tn, (38) 
and 

N 

li =1 
(%+a41 (zk,nA:+Wk,nB:-1..6 z k .  n&+ 1.6 Wk,nB:) 

+ (WJZ +a3~4)E=-  (a2 +a()bSn-azq&n (39) 

for l I n 5 N  where 

The other symbols are as defined previously. We note 
that, from a mathematical standpoint, the cost of intro- 
ducing a variable F consists of having to solve the above 
system of 4N equations in 4N unknowns rather than N 
distinct systems of four equations in four unknowns as 
was the case for a constant F. 

Despite the rather complex nature of the system, eq 
(36-39), it is possible t o  deduce at  least two prop- 
erties of the eddies forced by the topography without 
solving the system of 4N equations explicitly. The first 
relates to the phase relationship between the $*(A) and 
#T(A) waves. It follows from eq (36) and (37) with Tn=Qn 
= O  that 

A 

B: BT, 
A*, AT, 
-=-. 

The nth component of $* is therefore either ( 1 )  exactly 
in phase or (2)  exactly a half wavelength out of phase 
with the nth component of $T. This implies that, with the 
above formulation, no topographically induced standing 
wave can transport heat in the meridional direction, no 
matter what the zonal distribution of the friction co- 
efficient may be. 

It is also easy to show that the various Fourier compo- 
nents of the topographically induced stream function 
amplify or damp with height in a manner that is inde- 
pendent of F(X). The amplitude ratio A, defined as the 
ratio of the amplitudes of and #3, that is, 

EAST LONGITUDE WEST 

FIGURE 14.-Perturbation heights of the 25-, 50-, and 75-cb sur- 
faces as they are observed (thick solid curves), computed as a 
response to forcing by topography and diabatic heating with 
F,/Fo=l (dashed curves), and computed as above but with 
F,/Fo=2 (thin solid curves). The other parameters are the same 
as those in figure 1. 

can be expressed, using eq (36) and (37) in the form 

which is indeed independent of F. Figure 4 is therefore 
valid whether or not F is constant. 

In the following, we shall prescribe a distribution of the 
friction coefficient and seek the solution t o  the system 
[eq (36-39)], using the surface topography and diabatic 
heating presented in subsection 5A.  In  view of our limited 
knowledge about F(A), we consider only simple cases in 
which F=Fo, a constant, over the oceans and F=Fc, 
another constant, over the continents. Thus we assume 
that the distribution 

F= F, for O<X< 145'E, 

F=Fo for 145'E<A<120°W, 

F=Fc for 12O0W<A~60'W, 

F=Fo for 6O0W<A<0 
and 

is sufficiently realistic for our purposes and consider three 
separate pairs (Fc, F,, viz, Fc/Fo=l ,  2 ,  and 6), in each 
case keeping the zonal average of F equal to 4 X  lo-' s-'. 
The same parameters as in figure 1 were used except for 
F and N ,  the latter being set equal to 10, although tests 
have shown that N=5 could have been used without 
appreciable effects on the results. 

Figure 14 shows the heights of the 25-, 50- and 75-cb 
surfaces as functions of longitude for the cases Fc/F0=2 
(thin solid line) and F=const (dashed line) together 
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FIGURE 15.-Same as figure 14 except that the thin solid curves 
are computed with F,/Fo=6.  

with the observed heights averaged between 30°N and 
60°N. Changing the distribution of the friction coefficient 
from F=const to Fc/F0=2 has similar effects a t  all 
levels, namely, raising the height values from about 
l O O O E  eastward to 8OoW and decreasing them over the 
rest of the domain. The effect is not drastic; but on the 
other hand, i t  should be noticed that the small changes 
are such as to  bring the computed and observed standing 
waves into somewhat better agreement than in the case 
of a constant friction coefficient. 

Figure 15 is similar to  figure 14 except that its thin 
solid curves apply for F,/Fo=6. The effects of the variations 
in F on the standing eddies are of the same general 
nature as those discussed above, but appreciably stronger. 

We conclude from this section that, if the ratio Fc/Fo=2 
is more nearly valid than the ratio Fc/F0=6, the modifica- 
tions effected by the variable F can be neglected in the 
standing wave problem; if the latter ratio is more ap- 
propriate than the former, however, the ‘variations in 
F must be included. 

6. CONCLUSIONS 

This investigation has demonstrated that a two-level 
model of the atmosphere can be used to obtain consider- 
able insight into the problem of the middle-latitude 
standing waves. It has been shown that, despite its 
extreme simplicity, the model possesses a large number of 
properties in common with some more elaborate, less 
easily analyzed models. Computations have also been 
made which indicate that the standing waves forced by 
the middle-latitude orography as obtained from Berkofsky 
and Bertoni (1955) tend to reinforce those produced by 
the heat sources obtained from Brown (1964) for January 

1962 in the sense that the former are nearly in phase with 
the latter. The composite reponse of the model atmosphere 
to  forcing by both topography and heating has been found 
to be in rather good agreement with the observed January 
1962 standing eddies a t  25, 50, and 75 cb when the merid- 
ional wavelength of the perturbations was taken to be 60’ 
of latitude. 

The extent to which the computed and observed 
stationary waves agree with each other can be interpreted 
as a measure of the quality of the modeling assumptions 
used here (e.g., linearization, single meridional scale, 
simplified distribution of the drag coefficient, neglect 
of the transient eddies). These were not embodied in 
Brown’s computations of the heating field since, if we 
had used exactly the same modeling assumptions, the 
agreement between computations and observations would 
have been exact. I n  view of the rather good results 
obtained in this study, it can be concluded that the 
simplifying assumptions were reasonable as a first 
approximation. 

Finally, it has been shown that the variation of the 
friction coefficient from an assumed constant value over 
the oceans to another constant value over the continents 
has only a small effect on the standing eddies when the 
ratio of these two values is taken to be 2; the effect, on 
the other hand, is quite large when the ratio is assumed 
to be 6. 

While this study is similar to earlier studies in its basic 
formulation, it is novel in its application of observed heat 
sources and in the detailed analysis of the separate and 
combined effects of heating, topography, and friction. The 
agreement between the computed results and the observed 
state of the atmosphere is better than in earlier studies 
where more schematic heat sources were applied. 

The main deficiency of this study is the use of fl-plane 
geometry leading to unrealistic restrictions. Further 
studies should be aimed at  removing these restrictions 
by adopting the less restrictive spherical geometry. 
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